Limited-Time Offer: Enjoy 60% Savings! - Ends In 0d 00h 00m 00s Coupon code: 60OFF
Welcome to QA4Exam
Logo

- Trusted Worldwide Questions & Answers

Most Recent Databricks-Certified-Professional-Data-Engineer Exam Questions & Answers


Prepare for the Databricks Certified Data Engineer Professional exam with our extensive collection of questions and answers. These practice Q&A are updated according to the latest syllabus, providing you with the tools needed to review and test your knowledge.

QA4Exam focus on the latest syllabus and exam objectives, our practice Q&A are designed to help you identify key topics and solidify your understanding. By focusing on the core curriculum, These Questions & Answers helps you cover all the essential topics, ensuring you're well-prepared for every section of the exam. Each question comes with a detailed explanation, offering valuable insights and helping you to learn from your mistakes. Whether you're looking to assess your progress or dive deeper into complex topics, our updated Q&A will provide the support you need to confidently approach the Databricks-Certified-Professional-Data-Engineer exam and achieve success.

The questions for Databricks-Certified-Professional-Data-Engineer were last updated on Nov 18, 2024.
  • Viewing page 1 out of 24 pages.
  • Viewing questions 1-5 out of 120 questions
Get All 120 Questions & Answers
Question No. 1

In order to facilitate near real-time workloads, a data engineer is creating a helper function to leverage the schema detection and evolution functionality of Databricks Auto Loader. The desired function will automatically detect the schema of the source directly, incrementally process JSON files as they arrive in a source directory, and automatically evolve the schema of the table when new fields are detected.

The function is displayed below with a blank:

Which response correctly fills in the blank to meet the specified requirements?

Show Answer Hide Answer
Correct Answer: B

Option B correctly fills in the blank to meet the specified requirements. Option B uses the ''cloudFiles.schemaLocation'' option, which is required for the schema detection and evolution functionality of Databricks Auto Loader. Additionally, option B uses the ''mergeSchema'' option, which is required for the schema evolution functionality of Databricks Auto Loader. Finally, option B uses the ''writeStream'' method, which is required for the incremental processing of JSON files as they arrive in a source directory. The other options are incorrect because they either omit the required options, use the wrong method, or use the wrong format.Reference:

Configure schema inference and evolution in Auto Loader: https://docs.databricks.com/en/ingestion/auto-loader/schema.html

Write streaming data: https://docs.databricks.com/spark/latest/structured-streaming/writing-streaming-data.html


Question No. 2

What statement is true regarding the retention of job run history?

Show Answer Hide Answer
Correct Answer: C

Question No. 3

A junior data engineer is working to implement logic for a Lakehouse table named silver_device_recordings. The source data contains 100 unique fields in a highly nested JSON structure.

The silver_device_recordings table will be used downstream to power several production monitoring dashboards and a production model. At present, 45 of the 100 fields are being used in at least one of these applications.

The data engineer is trying to determine the best approach for dealing with schema declaration given the highly-nested structure of the data and the numerous fields.

Which of the following accurately presents information about Delta Lake and Databricks that may impact their decision-making process?

Show Answer Hide Answer
Correct Answer: D

This is the correct answer because it accurately presents information about Delta Lake and Databricks that may impact the decision-making process of a junior data engineer who is trying to determine the best approach for dealing with schema declaration given the highly-nested structure of the data and the numerous fields. Delta Lake and Databricks support schema inference and evolution, which means that they can automatically infer the schema of a table from the source data and allow adding new columns or changing column types without affecting existing queries or pipelines. However, schema inference and evolution may not always be desirable or reliable, especially when dealing with complex or nested data structures or when enforcing data quality and consistency across different systems. Therefore, setting types manually can provide greater assurance of data quality enforcement and avoid potential errors or conflicts due to incompatible or unexpected data types. Verified Reference: [Databricks Certified Data Engineer Professional], under ''Delta Lake'' section; Databricks Documentation, under ''Schema inference and partition of streaming DataFrames/Datasets'' section.


Question No. 4

A table named user_ltv is being used to create a view that will be used by data analysis on various teams. Users in the workspace are configured into groups, which are used for setting up data access using ACLs.

The user_ltv table has the following schema:

An analyze who is not a member of the auditing group executing the following query:

Which result will be returned by this query?

Show Answer Hide Answer
Correct Answer: A

Given the CASE statement in the view definition, the result set for a user not in the auditing group would be constrained by the ELSE condition, which filters out records based on age. Therefore, the view will return all columns normally for records with an age greater than 18, as users who are not in the auditing group will not satisfy the is_member('auditing') condition. Records not meeting the age > 18 condition will not be displayed.


Question No. 5

The DevOps team has configured a production workload as a collection of notebooks scheduled to run daily using the Jobs Ul. A new data engineering hire is onboarding to the team and has requested access to one of these notebooks to review the production logic.

What are the maximum notebook permissions that can be granted to the user without allowing accidental changes to production code or data?

Show Answer Hide Answer
Correct Answer: D

Granting a user 'Can Read' permissions on a notebook within Databricks allows them to view the notebook's content without the ability to execute or edit it. This level of permission ensures that the new team member can review the production logic for learning or auditing purposes without the risk of altering the notebook's code or affecting production data and workflows. This approach aligns with best practices for maintaining security and integrity in production environments, where strict access controls are essential to prevent unintended modifications. Reference: Databricks documentation on access control and permissions for notebooks within the workspace (https://docs.databricks.com/security/access-control/workspace-acl.html).


Unlock All Questions for Databricks Databricks-Certified-Professional-Data-Engineer Exam

Full Exam Access, Actual Exam Questions, Validated Answers, Anytime Anywhere, No Download Limits, No Practice Limits

Get All 120 Questions & Answers