Prepare for the Juniper Data Center, Associate exam with our extensive collection of questions and answers. These practice Q&A are updated according to the latest syllabus, providing you with the tools needed to review and test your knowledge.
QA4Exam focus on the latest syllabus and exam objectives, our practice Q&A are designed to help you identify key topics and solidify your understanding. By focusing on the core curriculum, These Questions & Answers helps you cover all the essential topics, ensuring you're well-prepared for every section of the exam. Each question comes with a detailed explanation, offering valuable insights and helping you to learn from your mistakes. Whether you're looking to assess your progress or dive deeper into complex topics, our updated Q&A will provide the support you need to confidently approach the Juniper JN0-280 exam and achieve success.
Within your router, you want to verify that you are learning routes from a remote BGP peer at IP address 10.10.100.1. Which command would satisfy the requirement?
To verify that your router is learning routes from a remote BGP peer at a specific IP address (e.g., 10.10.100.1), the correct command to use is show route receive-protocol bgp.
Step-by-Step Breakdown:
BGP Route Learning:
The show route receive-protocol bgp command displays the routes that have been received from a specified BGP peer. This helps in confirming that the remote peer is sending routes correctly and that your router is receiving them.
Command Example:
show route receive-protocol bgp 10.10.100.1
This will show all routes that have been received from the BGP peer with IP address 10.10.100.1.
Juniper Reference:
BGP Route Verification: Use this command to troubleshoot and verify that routes from a specific BGP peer are being received.
What is the primary purpose of an IRB Layer 3 interface?
The primary purpose of an IRB (Integrated Routing and Bridging) interface is to enable inter-VLAN routing in a Layer 3 environment. An IRB interface in Junos combines the functionality of both Layer 2 bridging (switching) and Layer 3 routing, allowing devices in different VLANs to communicate with each other.
Step-by-Step Breakdown:
VLANs and Layer 2 Switching:
Devices within the same VLAN can communicate directly through Layer 2 switching. However, communication between devices in different VLANs requires Layer 3 routing.
IRB Interface for Inter-VLAN Routing:
The IRB interface provides a Layer 3 gateway for each VLAN, enabling routing between VLANs. Without an IRB interface, devices in different VLANs would not be able to communicate.
Configuration:
In Juniper devices, the IRB interface is configured by assigning Layer 3 IP addresses to it. These IP addresses serve as the default gateway for devices in different VLANs.
Example configuration:
set interfaces irb unit 0 family inet address 192.168.1.1/24
set vlans vlan-10 l3-interface irb.0
This allows VLAN 10 to use the IRB interface for routing.
Juniper Reference:
IRB Use Case: Inter-VLAN routing is essential in data centers where multiple VLANs are deployed, and Juniper's EX and QFX series switches support IRB configurations for this purpose.
Which statement is correct about aggregate routes?
An aggregate route is a summarized route that is created by combining multiple specific routes into a single, broader route. In Junos OS, when an aggregate route is configured, its default next hop is set to reject.
Step-by-Step Explanation:
Aggregate Route:
Aggregate routes are used to reduce the size of routing tables by representing a collection of more specific routes with a single summary route. They help improve routing efficiency and scalability, especially in large networks.
Default Next Hop Behavior:
When you configure an aggregate route in Junos OS, it has a reject next hop by default.
The reject next hop means that if a packet matches the aggregate route but there is no more specific route in the routing table for that destination, the packet will be discarded, and an ICMP 'destination unreachable' message is sent to the source.
This behavior helps to prevent routing loops and ensures that traffic isn't forwarded to destinations for which there is no valid route.
Modifying Next Hop:
If needed, the next hop behavior of an aggregate route can be changed to discard (which silently drops the packet) or to another specific next hop. However, by default, the next hop is set to reject.
Juniper Reference:
Junos Command: set routing-options aggregate route <route> reject to configure an aggregate route with a reject next hop.
Verification: Use show route to verify the presence and behavior of aggregate routes.
MACsec provides protection against which two types of threats? (Choose two.)
MACsec (Media Access Control Security) provides data confidentiality, integrity, and origin authenticity at Layer 2, protecting against several types of threats.
Step-by-Step Breakdown:
Man-in-the-Middle Attack Protection:
MACsec encrypts traffic at Layer 2, preventing man-in-the-middle attacks where an attacker intercepts and manipulates traffic between two communicating devices. Since the data is encrypted, any intercepted packets are unreadable.
Protection Against Playback Attacks:
MACsec also protects against playback attacks by using sequence numbers and timestamps to ensure that old, replayed packets are not accepted by the receiver.
Juniper Reference:
MACsec Configuration: Juniper devices support MACsec for securing Layer 2 communications, ensuring protection against replay and man-in-the-middle attacks in sensitive environments.
Which statement is correct about areas in OSPF?
In OSPF (Open Shortest Path First), areas are used to segment a network into smaller, more manageable pieces to improve scalability. By dividing a network into areas, OSPF can reduce the size of the link-state database (LSDB), which helps routers process updates more efficiently.
Step-by-Step Breakdown:
Purpose of OSPF Areas:
OSPF areas allow for hierarchical routing within the OSPF domain. Routers in the same area have identical LSDBs, but routers in different areas do not exchange full link-state information. Instead, they exchange summarized routes, which reduces the LSDB size and CPU/memory usage.
Benefits:
Reducing the LSDB size improves scalability and ensures faster convergence in larger networks. Area 0 is the backbone area, and all other areas must connect to it, forming a hierarchical structure.
Juniper Reference:
OSPF Configuration: Areas in OSPF are configured to optimize network performance by limiting the scope of link-state advertisements (LSAs) to within an area.
Full Exam Access, Actual Exam Questions, Validated Answers, Anytime Anywhere, No Download Limits, No Practice Limits
Get All 65 Questions & Answers