Prepare for the Juniper Data Center, Specialist exam with our extensive collection of questions and answers. These practice Q&A are updated according to the latest syllabus, providing you with the tools needed to review and test your knowledge.
QA4Exam focus on the latest syllabus and exam objectives, our practice Q&A are designed to help you identify key topics and solidify your understanding. By focusing on the core curriculum, These Questions & Answers helps you cover all the essential topics, ensuring you're well-prepared for every section of the exam. Each question comes with a detailed explanation, offering valuable insights and helping you to learn from your mistakes. Whether you're looking to assess your progress or dive deeper into complex topics, our updated Q&A will provide the support you need to confidently approach the Juniper JN0-480 exam and achieve success.
Exhibit.
Referring to the exhibit, how many broadcast domains will an Ethernet frame pass through when traversing the IP fabric from Server A to Server B?
In the exhibit, there are two broadcast domains that an Ethernet frame will pass through when traversing the IP fabric from Server A to Server B. The first broadcast domain is the one that contains Server A and the leaf device that it is connected to. The second broadcast domain is the one that contains Server B and the leaf device that it is connected to. The IP fabric itself is not a broadcast domain, because it uses IP routing and VXLAN encapsulation to transport the Ethernet frames over the Layer 3 network. Therefore, the statement C is correct in this scenario.
The following three statements are incorrect in this scenario:
A) 1. This is not true, because there are not one, but two broadcast domains that an Ethernet frame will pass through when traversing the IP fabric from Server A to Server B. The IP fabric itself is not a broadcast domain, because it uses IP routing and VXLAN encapsulation to transport the Ethernet frames over the Layer 3 network.
B) 4. This is not true, because there are not four, but two broadcast domains that an Ethernet frame will pass through when traversing the IP fabric from Server A to Server B. The spine devices and the leaf devices that are not connected to the servers are not part of the broadcast domains, because they use IP routing and VXLAN encapsulation to transport the Ethernet frames over the Layer 3 network.
D) 3. This is not true, because there are not three, but two broadcast domains that an Ethernet frame will pass through when traversing the IP fabric from Server A to Server B. The IP fabric itself is not a broadcast domain, because it uses IP routing and VXLAN encapsulation to transport the Ethernet frames over the Layer 3 network.
In the Juniper Apstra Ul. which two resource types would be created in the Resources menu? (Choose two.)
IPv4 (including Host IPv4)
IPv6 (including Host IPv6)
ASN (autonomous system number)
VNI (virtual network identifier)
VLAN (virtual local area network)
Integer (used for pool type VLAN in local pools in Freeform blueprints)
You want to make a widget appear on the main dashboard in Juniper Apstr
a. In this scenario, which statement is correct?
In Juniper Apstr
a. which three modes are available for devices? (Choose three.)
Exhibit.
Referring to the exhibit, what needs to change in the IP fabric to make it a valid IP fabric?
To make the IP fabric a valid IP fabric, the connection between the two spine nodes must be removed. This is because an IP fabric is a network topology that uses a spine-leaf architecture, where the spine devices are only connected to the leaf devices, and the leaf devices are only connected to the spine devices. This creates a non-blocking, high-performance, and scalable network that supports Layer 3 routing protocols such as BGP or OSPF. The connection between the two spine nodes in the exhibit violates the spine-leaf design principle and introduces unnecessary complexity and potential loops in the network. The other options are incorrect because:
A) The IP fabric must consist of only one device model throughout the fabric is wrong because an IP fabric can support different device models as long as they are compatible and interoperable. The exhibit shows two different models of QFX switches, which are both supported by Juniper Networks for IP fabric deployments.
B) The connection between the two spine nodes must be increased to 40 Gbps is wrong because increasing the speed of the connection does not make the IP fabric valid. The connection between the two spine nodes should be removed, as explained above.
C) The IP fabric connections must be increased to a speed greater than 10 Gbps is wrong because the speed of the connections does not affect the validity of the IP fabric. The IP fabric can use any speed that meets the bandwidth and performance requirements of the network. 10 Gbps is a common speed for IP fabric connections, but higher or lower speeds can also be used depending on the network design and devices.Reference:
IP Fabric Underlay Network Design and Implementation
IP Fabric: Automated Network Assurance Platform
Full Exam Access, Actual Exam Questions, Validated Answers, Anytime Anywhere, No Download Limits, No Practice Limits
Get All 65 Questions & Answers