Prepare for the Oracle Cloud Infrastructure 2024 AI Foundations Associate exam with our extensive collection of questions and answers. These practice Q&A are updated according to the latest syllabus, providing you with the tools needed to review and test your knowledge.
QA4Exam focus on the latest syllabus and exam objectives, our practice Q&A are designed to help you identify key topics and solidify your understanding. By focusing on the core curriculum, These Questions & Answers helps you cover all the essential topics, ensuring you're well-prepared for every section of the exam. Each question comes with a detailed explanation, offering valuable insights and helping you to learn from your mistakes. Whether you're looking to assess your progress or dive deeper into complex topics, our updated Q&A will provide the support you need to confidently approach the Oracle 1Z0-1122-24 exam and achieve success.
Which feature is NOT supported as part of the OCI Language service's pretrained language processing capabilities?
The OCI Language service offers several pretrained language processing capabilities, including Text Classification, Sentiment Analysis, and Language Detection. However, it does not natively support Text Generation as a part of its core language processing capabilities. Text Generation typically involves creating new content based on input prompts, which is a feature more commonly associated with models specifically designed for natural language generation.
Which type of machine learning is used to understand relationships within data and is not focused on making predictions or classifications?
Unsupervised learning is a type of machine learning that focuses on understanding relationships within data without the need for labeled outcomes. Unlike supervised learning, which requires labeled data to train models to make predictions or classifications, unsupervised learning works with unlabeled data and aims to discover hidden patterns, groupings, or structures within the data.
Common applications of unsupervised learning include clustering, where the algorithm groups data points into clusters based on similarities, and association, where it identifies relationships between variables in the dataset. Since unsupervised learning does not predict outcomes but rather uncovers inherent structures, it is ideal for exploratory data analysis and discovering previously unknown patterns in data .
What is the key feature of Recurrent Neural Networks (RNNs)?
Recurrent Neural Networks (RNNs) are a class of neural networks where connections between nodes can form cycles. This cycle creates a feedback loop that allows the network to maintain an internal state or memory, which persists across different time steps. This is the key feature of RNNs that distinguishes them from other neural networks, such as feedforward neural networks that process inputs in one direction only and do not have internal states.
RNNs are particularly useful for tasks where context or sequential information is important, such as in language modeling, time-series prediction, and speech recognition. The ability to retain information from previous inputs enables RNNs to make more informed predictions based on the entire sequence of data, not just the current input.
In contrast:
Option A (They process data in parallel) is incorrect because RNNs typically process data sequentially, not in parallel.
Option B (They are primarily used for image recognition tasks) is incorrect because image recognition is more commonly associated with Convolutional Neural Networks (CNNs), not RNNs.
Option D (They do not have an internal state) is incorrect because having an internal state is a defining characteristic of RNNs.
This feedback loop is fundamental to the operation of RNNs and allows them to handle sequences of data effectively by 'remembering' past inputs to influence future outputs. This memory capability is what makes RNNs powerful for applications that involve sequential or time-dependent data.
You are working on a multilingual public announcement system. Which AI task will you use to implement it?
For a multilingual public announcement system, the AI task that would be most relevant is 'Text to Speech' (TTS). This task involves converting written text into spoken words, which can then be broadcasted over public address systems in multiple languages.
Text to Speech technology is crucial for creating accessible and understandable announcements in different languages, especially in environments like airports, train stations, or public events where clear verbal communication is essential. The TTS system would be configured to support multiple languages, allowing it to deliver announcements to diverse audiences effectively .
Which AI domain can be employed for identifying patterns in images and extract relevant features?
Computer Vision is the AI domain specifically employed for identifying patterns in images and extracting relevant features. This field focuses on enabling machines to interpret and understand visual information from the world, automating tasks that the human visual system can perform, such as recognizing objects, analyzing scenes, and detecting anomalies. Techniques in Computer Vision are widely used in applications ranging from facial recognition and image classification to medical image analysis and autonomous vehicles.
Full Exam Access, Actual Exam Questions, Validated Answers, Anytime Anywhere, No Download Limits, No Practice Limits
Get All 41 Questions & Answers